
Electronic copy available at: http://ssrn.com/abstract=1811786

 International Journal of Computer Information Systems,  

Vol. 2, No. 3, 2011 

 

GARCH -Monte-Carlo Simulation Models with 

Wavelets Decomposition Algorithm for Stock 

Returns Prediction 
 

Eleftherios Giovanis 

Department of Economics 

Royal Holloway University of London 

Egham, England 

Eleftherios.Giovanis.2010@live.rhul.ac.uk 

 

 

 
Abstract— In this paper we examine four different approaches in 
trading rules for stock returns. More specifically we examine the 
popular procedures in technical analysis, which are the moving 
average and the Moving Average Convergence-Divergence 
(MACD) oscillator. The third approach is the simple random 
walk autoregressive model and the fourth model we propose is a 
Generalized Autoregressive Conditional Heteroskedasticity 
(GARCH) regression with wavelets decomposition and Monte-
Carlo simulations algorithm developed in MATLAB. We 
examine five major stock market index returns for a testing 
forecasting period of 10 days ahead.  We conclude that moving 
average and MACD might lead to net profits, but not in all cases, 
therefore are not consistent procedures. Furthermore, moving 
average 1-30 provides the best results. On the other hand random 
walk autoregressive model leads in all cases to net losses. Finally, 
the model we propose not only leads always to net profits, but 
also to significant higher profits in three stock indices than the 
respective conventional technical analysis tools.  

 

Keywords- Forecasting; MACD; MATLAB; Moving Average; Stock 

Returns; Random Walk  

 

I. INTRODUCTION 

 

Two of the most used and popular trading rules used by 

financial traders and fund managers are the moving average 

and the MACD oscillator.  Moving average is one method of 

technical analysis among others, which during the last years 

has gained a significant increase of interest in the academic 

world too. Some empirical studies like among others [1]-[3] 

provide evidences of profitability by using technical trading 

rules. Many other applications have been developed in 

technical analysis and trading rules modeling, as Fibonacci 

retracement, candlesticks, various oscillators and momentum 

indicators among others [4].   

Since the decade of 1990 and especially the last years new 

approaches have been applied with superior results than the 

traditional technical analysis tools and traditional statistic and 

econometric approaches [5]-[11]. Some of them are neural 

networks, fuzzy logic, and genetic algorithms and wavelets 

analysis. In this paper we propose a computation model where 

the full programming routine written in MATLAB software is 

available and provided in the appendix, which combines the 

well know GARCH model with Monte-Carlo simulation and 

wavelet decomposition. 

The structure of this paper is: The second section presents 

a brief description on the methodology of the four approaches 

we examine. In the third section the data sample is provided. 

In the fourth section the empirical results are reported and 

finally, in section five we discuss the main conclusions of our 

findings.  

 

II. METHODOLOGY 

 

A.   Moving average 

 

 

The simple moving average is defined as: 

                   
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Eq. (1) can be used as a trading rule, which generates a buy 

signal when the current stock price is higher or above the 

moving average and a sell signal when it is below. Eq. (1) is 

the simple moving average, while there are also additional 

modifications in moving average, as the exponential, the 

square root weighted, the weighted or the linear moving 

average. We examine all the mentioned possible modifications 

of moving average, but we present only the results of the 

simple moving average as the conclusions are the same, as 

also many financial traders claim that. We examine three 

possible moving averages. The 1-30, 1-50 and 1-200, where 

the short period is 1 day and the long periods are respectively 

30, 50 and 200 days. We should mention that we refer to days, 
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because the data used in analysis of this paper are on daily 

frequency. 

 

 

 

B Moving average convergence / divergence (MACD) 

 

The MACD oscillator is computed by subtraction of the 

26-period exponential moving average with the 12-period 

exponential moving average. In the first case the smoothing 

factor a is 0.075 and in the second case is 0.15 Then the 9-

period exponential moving average of MACD, with smoothing 

factor α equal with 0.20, is used as the signal line. So if the 

MACD and 9-period moving average lines are crossed and if 

the MACD line falls below the other, then a sell signal is 

generated, while in the opposite situation we have a buy 

signal. More specifically is defined as: 

 

           26-12- - ttt EMAEMAMACD                   (2) 

 

If MACD line rises above the 9-period EMA line then buy  

 

Else If MACD line falls below the 9-period EMA line then sell  

 

, where EMA denotes the Exponential Moving Average and 

the formula is: 

 

           

                 1)1(  ttt SaYaS                       (3) 

 

, where the coefficient α represents the degree of weighting 

decrease, a constant smoothing factor between 0 and 1. A 

higher α discounts older observations faster. Alternatively, α 

may be expressed in terms of N time periods, where 

α = 2/(N+1). Yt is the observation at a time period t and St is 

the value of the EMA at period t-1. 

 

 

C.  Random walk autoregressive model 

 

The autoregressive (AR) models are widely used for time 

series analysis by economists, which is a random process. We 

examine an autoregressive model of order one AR(1) and is 

defined as: 

 

                           ttt RcR   1                        (4) 

           

, where Rt and Rt-1 denote the current stock returns and 

stock returns with one lag respectively, c is the constant, φ is 

the estimated parameter and εt is the disturbance term or the 

white noise. Also the stock returns Rt are defined as: 

 

                            )log( 1 ttt PPR                      (5) 

 

, where Pt and Pt-1 is the current price and the price of the 

previous period respectively. In the following we predict the 

value for the next period and we form the simple trading rules: 

 

If the predicted value is positive then we buy 

 

Else If the predicted value is negative then we sell 

 

We should mention that in the above rules we do not 

incorporate the comparison of predicted values with actual 

stock returns or moving average, as the disadvantage of AR 

models is that generate very low forecasts, which are not close 

to actual stock returns, but are in many case close to zero. In 

addition the computational algorithm we propose generates in 

the most case high values and very close to the actual stock 

returns.  

 

 

D. GARCH with Monte Carlo simulations and wavelets 

decomposition computational algorithm.  

 

In this part we present the computational algorithm we 

propose in a simple manner. There are two alternatives 

approaches and we describe the first one, while the second is 

almost the same. The steps of the computation are: 

 

a) First we decompose data applying discrete wavelet 

transformation (DWT) with Daubechies wavelets on the initial 

stock returns [12]. More specifically the DWT of a signal X 

for 1 level is defined as: 

               
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,where g and h denote the impulse response and the filter 

outputs are sub-sampled by two. The final convolution is: 

                              2 gXyhighpass                        (8) 

 

                          2 hXylowpass                   (9) 

 

The DWT is computed by successive lowpass and 

highpass filtering of the discrete-time domain signal. For the 

cases of DAX, CAC-40 and NIKKEI-225 indices we used 

five-level decomposition and for S&P 500 and FTSE-100 

indices we used six-level decomposition for the optimum 

forecasting performance. Because in all cases the data we use 

are too long, there is need to take high levels of 

decomposition. Specifically for data longer than 4,000 levels 

above 4 are necessary to obtain the optimum results. In fig. 1 a 

5-level decomposition tree is presented. Similarly, a 6-level 

can be drawn.  
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Fig. 1 Five-level wavelet decomposition tree 

 

Daubechies wavelets are defined by the polynomial: 
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, where denotes the binomial coefficients. Because the further 

description of Daubechies wavelets and their properties are too 

long, more details can be found in [13]. 

 

b) The second step is to estimate a GARCH (1,1) process 

where the mean and variance equations are presented in Eq. 

(12)- (14) respectively.   

 

 

                                   tt cR                                 (12) 

 

                                 ),0(~ 2 t                                (13) 
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, where Rt is defined as previously, c is the constant and εt is 

the disturbance term which follows the distribution in (13). 

Parameter ω is the constant of the variance equation, α0 is the 

coefficient of ARCH effects and similarly α1 is the coefficient 

of ARCH effects.
 

 

c) The third step is to simulate the residuals or the 

innovations of GARCH (1,1) estimation with Monte-Carlo. 

First we should set up the parameters for the simulation 

process. First we should define the random number generator 

seed for reproducibility, which is set up at this way that every 

time that we run the algorithm the generator is reset to its 

initial state. Because we have long sample we set up the 

simulated samples roughly 4 times greater than the initial data. 

So for all stock indices, except from S&P 500, we have data 

ranging 4,600 through 6,500 we obtain a simulated sample 

equal with 20,000. Similarly, for the S&P 500 where the initial 

data are roughly 15,000 we take a sample equal with 60,000.   

 

d) The final step is to take a random permutation sample 

with length equal with the initial data sample and then this 

sample is selected from the residuals or innovations after a 

number of replications. The forecast period is defined as 10 

days and the replication number is set up at 100. The final 

selected sample denotes the predicted values. The trading rule 

is defined exactly as in the case of random walk autoregressive 

model: 

 

If the predicted value is positive then we buy 

 

Else If the predicted value is negative then we sell 

 

We should mention that with this algorithm we have the 

ability to forecast for a period than one ahead, as we do with 

the other traditional technical analysis approaches. So we have 

the opportunity to observe the market for a10 period ahead, as 

we define this period as the forecasting test sample and to take 

the appropriate measures and trading strategic decisions in 

order to maximize our portfolio. Furthermore, this procedure 

can be applied to forecast longer periods as 100 days with net 

profits, while for this period of 100 days MACD and moving 

averages leads in the most cases to net losses, expect from 

moving average 1-200. Also, as we mentioned above, we 

cannot forecast a long ahead period as 10 or 100 samples with 

the traditional approaches in technical analysis, so each time 

we have to wait for the new actual price to be formulated. In 

addition there are technical analysis tools which show the 

trend process in the long period ahead, but usually these 

approaches are more appropriate in the short-term periods. 

Also, the second approach which is not presented here can be 

split in to two samples. The first sample contains the first half 

data and the second sample the remained data. We follow the 

above steps we described for the first sample and the same 

process is applied for the second sample. Then we test both 

samples in order to investigate which one gives the best 

results.         

 

 

 

E. Estimation of Net Profits-Losses 

 

 

In order to test which of the approaches we examine is the 

most profitable we apply the following formula procedure to 

compute the net profits or losses. We discriminate three cases 
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in stock trading. The first one is the case when the stock 

returns are positive, the second one when are zero and finally 

when stock returns are negative. We define a dummy variable 

Dt+1.  

 

If  rt+1 > 0 then   

 

                                      Dt+1  =  1                                   (15) 

  

If  rt+1 = 0 then   

 

                                      Dt+1  =  Dt                                 (16)                                                    

 

If  rt+1 < 0 then   

 

                                     Dt+1  = -1                                    (17)                                       

 

The net profits-losses are given by relation: 

 

 )()( 1111 ttttttt PDDcPPDR            (18) 

 

Variables Dt+1 and Dt are defined as previously which is the 

forecasting and the current signal respectively, variables Pt+1 

and Pt are the future and current stock prices respectively and c 

is the commission rate which is charged for the services of 

trading and depending on whether it‟s an intraday trading or 

electronic trading or depending on the different rates offered 

by various companies and financial trading institutions in 

different countries. Usually the commissions rates can be 

varied between 0.008 and 0.01, but nowadays in the Forex 

trading the most companies do mot charge any commission 

rate or this rate can be very low. Besides that we set up a very 

low rate equal with 0.001. Next we present the most used 

statistical test for the investment measure [14], which is the 

Sharpe Ratio and can be computed as: 

 

                               

i

fi rr
SR



 -)(
                            (19) 

 

, where ri is the stock returns in the period i, rf is the risk free 

interest rate, μ is the average and σi is the standard deviation of 

the net profits-losses in the forecasting period. As long as the 

average is higher and the standard deviation is lower the 

higher the Sharpe Ratio is, which indicates a higher and more 

efficient investment performance. The risk free rate is omitted 

as it can be very low and insignificant.   

 

 

III. DATA 

 

We examine four major stock market indices based on daily 

data of closed price returns. These are the S&P 500 for U.S.A., 

FTSE-100 index for UK, DAX index for Germany, CAC-40 

for France and NIKKEI-225 for Japan. The estimation starting 

period is 3, January 1950 for S&P 500, 2, April 1984 for 

FTSE-100, 26, November 1990 for DAX, 1, March 1990 for 

CAC-40 and 4, January 1984 for NIKKEI-225. The ending 

time period for the estimation is common for all estimations 

and it is 30, October 2009. The remaining period from 2, 

November through 13, November 2009 is obtained as the 

forecasting test period, which is actually 10 trading days. We 

should mention that the forecasting is done each time for one 

period ahead with the traditional approaches. So, each day we 

find the forecasting value and the new actual value is added 

each time in our sample. But in order to investigate the 

forecasting power of each procedure we examine a 10 days 

period. On the contrary with the computational algorithm we 

propose we apply forecasts for 10 periods ahead, as we 

mentioned in the previous section. 

 

 

 

IV. EMPIRICAL RESULTS 

 

In Table 1 we present the correct percentage concerning the 

prediction of the correct sign of stock returns. We observe that 

the model we propose does not outperform the other 

approaches, but as we mentioned above it is not always 

enough to predict the correct sign. The important is to predict 

the correct sign of significant changes. For example there is a 

great difference of predict correctly the sign of a change of 

0.023 percentage decrease than a 0.23 per cent. More 

specifically, in table 2 we observe that the moving average 1-

200 and the simulated GARCH model have the same 

percentage of correct prediction, but the net profits generated 

by the last model are much more superior. 

Also, the random walk model in all cases presents net 

losses, while we get net profits only in DAX and NIKKEI-225 

indices for MACD oscillator and CAC-40 and NIKKEI-225 

indices for moving average 1-200 respectively. Net profits are 

reported in three and four stock indices with moving average 

1-50 and 1-30 respectively. So based on the traditional 

technical analysis approaches we observe that moving average 

1-30 presents the best forecasting performance. On the other 

hand the model we propose leads always to net profits, which 

are higher than the other procedures in four stock indices, 

where in CAC-40 and NIKKEI-225 the profits are 

impressively higher. This indicates that wavelets and GARCH 

Monte-Carlo simulations are able to capture the significant 

changes, increased or decreased values, in stock returns.    

In Table III we present the estimated results of Sharpe 

ratios, which are positive in all cases with the wavelets 

GARCH model. As we mentioned, this model can be used for 

the prediction for much longer periods, as 100 sample data, 

with net profits.  We recommend that this algorithm can be 

improved by many ways, as taking lag values of stock returns 

as independent variables, or setting up fuzzy rules with genetic 

algorithms optimization, which can be trained also with neural 

networks.     

 

 

March Issue Page 32 of 69 ISSN 2229 5208



 International Journal of Computer Information Systems,  

Vol. 2, No. 3, 2011 

 

TABLE I. Correct predicted percentage of stock returns sign 

 

Index 

Moving 

Average 

1-200 

Moving 

Average 

1-50 

Moving 

Average 

1-30 

Random 

Walk 
MACD 

GARCH- 

MONTE- 

CARLO 

 

S&P 

500 

40.00% 40.00% 50.00% 40.00% 50.00% 50.00% 

 

FTSE-

100 

10.00% 80.00% 90.00% 60.00% 40.00% 70.00% 

 

CAC-40 
60.00% 30.00% 50.00% 40.00% 30.00% 70.00% 

 

DAX 
40.00% 60.00% 60.00% 50.00% 50.00% 40.00% 

 

NIKKEI 

225 

80.00% 70.00% 50.00% 30.00% 50.00% 80.00% 

 

 

 

TABLE II.  Net Profits (Losses) 

 

 

Index 
 

Moving 

Average  

1-200 

 

 

Moving 

Average  

1-50 

 

 

Moving 

Average  

1-30 

 

 

Random  

Walk 

 

MACD 

 

GARCH- 

MONTE- 

CARLO 

 

S&P 500 

   

-47.99 

   

13.49 

  

 35.81 

 

 -53.63 

 

 -38.34 

  

44.46 

 

FTSE-100 

 

-536.51 

  

236.53 

 

457.30 

 

-156.08 

 

 -16.78 

    

212.15 

 

CAC-40 

   

491.34 

  

-712.04 

 

233.26 

  

-63.35 

 

-730.43 

 

631.08 

 

DAX 

 

-362.24 

 

 176.27 

 

176.27 

 

 -334.27 

 

  217.70 

 

 191.85 

 

NIKKEI 

225 

 

  204.18 

 

  -23.14 

 

 -314.86 

 

 -550.20 

 

  201.43 

 

735.79 

 

 

TABLE III. Shape Ratios of forecasts 

 

Index Moving 

Average  

1-200 

Moving 

Average  

1-50 

Moving 

Average  

1-30 

Random  

Walk 

MACD GARCH- 

MONTE- 

CARLO 

 

S&P 500 

 

-0.0940 

   

0.0270 

  

0.0719 

 

-0.1060 

 

 -0.0722 

  

0.0882 

 

FTSE-

100 

 

-0.2313 

  

 0.1242 

 

 0.2586 

 

-0.0763 

 

 -0.0075 

    

0.1040 

 

CAC-40 

 

 0.1098 

 

 -0.1497 

 

 0.0485 

 

-0.0132  

 

 -0.1534 

  

0.1329 

 

DAX 

 

-0.1221 

 

  0.0625 

 

 0.0625 

 

-0.3683 

 

  0.0729 

  

0.0673 

 

NIKKEI 

225 

 

 0.0597 

 

 -0.0065 

 

-0.0876 

 

-0.1268 

 

  0.0584 

  

0.2306 

 

V. CONCLUSIONS 

In the paper we proposed an alternative tool as a trading rule 

strategy, which is a discrete wavelet transformation of stock 

returns and univariate GARCH with Monte-Carlo simulated 

regressions. Additionally we applied two popular technical 

analysis approaches, the moving average and the MACD as 

also we examined a random walk autoregressive model and 

we have shown that theses procedures do not always lead to 

net profits. The model we propose, might not present always 

superior profits than the traditional technical analysis trading 

rules, but we should notice that presents always net profits, so 

it is more consistent, as also in two stock indices we 

examined, the profits are much more superior to the profits 

generated by the other procedures. 
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APPENDIX 

 
MATLAB routine (script file) 

clear all; 

% Load input data 

load file.mat 

method=3 % 1 for moving average, 2 for MACD, 3 for GARCH and 

wavelets where 

% gives a „buy‟ signal for positive predicted values and „sell‟ signal 

for 

March Issue Page 33 of 69 ISSN 2229 5208

http://portal.acm.org/author_page.cfm?id=81100460402&coll=GUIDE&dl=GUIDE&trk=0&CFID=63826140&CFTOKEN=47465684
http://portal.acm.org/author_page.cfm?id=81100025475&coll=GUIDE&dl=GUIDE&trk=0&CFID=63826140&CFTOKEN=47465684
http://www.atlantis-press.com/publications/aisr/
http://www.citeulike.org/group/6987/author/Ghandar:A
http://www.citeulike.org/group/6987/author/Michalewicz:Z
http://www.citeulike.org/group/6987/author/Schmidt:M
http://www.citeulike.org/group/6987/author/Zurbrugg:R
http://www.princeton.edu/~icd/publications/66.ps


 International Journal of Computer Information Systems,  

Vol. 2, No. 3, 2011 

 

% negative values, 4 for the same with 3 but use moving average of 

% predicted values, 5,6,7 and 8 the same with 1,2,3 and 4 

respectively but 

%for real application and not for testing or backtesting. 

lag=50 % Define the length of moving average. Usually 10,20,30,50, 

70,100 and 

% 200 are used. 

factor='e' % 0 for simple, 0.5 for square root weighted moving 

average, 

% 1 for linear moving average, 2 for square weighted moving 

average 

% end 'e' for exponential 

risk_free=0.001 

length_test=100 % length of sample for testing. This script is used for 

testing. If you 

% wish to apply for future purposes set up the value of length_test=0 

decomposition_tree=1 % lenght of decomposition tree 

M=length_test; % length of predicted data 

if method==1 

train_data=data(1:end-length_test-1,:) 

[Short,Long]=movavg(train_data,1,lag,factor) 

test_sample=data(end-length_test:end,:) 

test_long=Long(end-length_test-1:end,:) 

stock=data(end-length_test-1:end,:) 

[nk1,ni]=size(test_sample) 

for kk=1:nk1 

 

if test_sample(kk,:)>test_long(kk,:) 

s(kk,:)=1 % buy 

elseif test_sample(kk,:)<test_long(kk,:) 

    s(kk,:)=-1 %sell 

end 

end 

for jj=2:nk1 

total(jj,:)=s(jj)*(stock(jj)-stock(jj-1))-0.001*(abs(s(jj)-s(jj-

1))*stock(jj)) 

end 

profit=sum(total) 

average=mean(total) 

standard_deviation=std(total) 

sharpe_ratio=(average)/standard_deviation 

elseif method==2 

train_data=data(1:end-length_test-1,:) 

[macdvec, nineperma] = macd(train_data) 

test_sample=macdvec(end-length_test:end,:) 

test_macd=nineperma(end-length_test:end,:) 

stock=data(end-length_test-1:end,:) 

[nk1,ni]=size(test_sample) 

for kk=1:nk1 

if test_sample(kk,:)>test_macd(kk,:) 

s(kk,:)=1 % buy 

elseif test_sample(kk,:)<test_macd(kk,:) 

s(kk,:)=-1 % sell 

end 

end 

for jj=2:nk1 

total(jj,:)=s(jj)*(stock(jj)-stock(jj-1))-0.001*(abs(s(jj)-s(jj-

1))*stock(jj)) 

end 

profit=sum(total) 

average=mean(total) 

standard_deviation=std(total) 

sharpe_ratio=(average)/standard_deviation 

elseif method==3 

y=price2ret(data) 

N=length(y) 

% We decompose our data with function db3 

[XX,l] = wavedec(y,decomposition_tree,'db3'); 

% We define GARCH (1,1) process 

[Kappa, Alpha, Beta] = ugarch(XX, 1, 1) 

% We set the random number generator seed for reproducability 

randn('state', 0) 

NumSamples = 20000; 

firstpoint=length_test 

% We simulate the process with Monte Carlo 

[U , H] = ugarchsim(Kappa, Alpha, Beta, NumSamples); 

% Length of vector 

%V=1%length(data); 

% From current day we extract firstpoint data randomly selected 

currentprice = randperm(N-M); 

currentprice= currentprice+N; 

for j=1:firstpoint 

Y1 = currentprice(j); 

Y0 = Y1-N+1; 

p = U(Y0:Y1); 

p = p(:); 

Y1(1,:) = p(1,:); 

prediction = U(Y1+1:Y1+M); 

end 

[nk1,ni]=size(prediction) 

for kk=1:nk1 

if prediction(kk,:)>0 

s(kk,:)=1 % buy 

elseif prediction(kk,:)<0 

s(kk,:)=-1 % sell 

end 

end 

stock=data(end-length_test:end,:) 

for jj=2:nk1 

total(jj,:)=s(jj)*(stock(jj)-stock(jj-1))-0.001*(abs(s(jj)-s(jj-

1))*stock(jj)) 

end 

profit=sum(total) 

average=mean(total) 

standard_deviation=std(total) 

sharpe_ratio=(average)/standard_deviation 

elseif method==4 

N=length(data) 

% We decompose our data with function db3 

[XX,l] = wavedec(data,decomposition_tree,'db3'); 

train_data=XX(1:end-length_test-1,:) 

[Short,Long]=movavg(train_data,1,lag,factor) 

test_sample=data(end-length_test:end,:) 

test_long=Long(end-length_test-1:end,:) 

stock=data(end-length_test-1:end,:) 

[nk1,ni]=size(test_sample) 

for kk=1:nk1 

if test_sample(kk,:)>test_long(kk,:) 

s(kk,:)=1 % buy 

elseif test_sample(kk,:)<test_long(kk,:) 

s(kk,:)=-1 % sell 

end 

end 

for jj=2:nk1 

total(jj,:)=s(jj)*(stock(jj)-stock(jj-1))-0.001*(abs(s(jj)-s(jj-

1))*stock(jj)) 
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end 

profit=sum(total) 

average=mean(total) 

standard_deviation=std(total) 

sharpe_ratio=(average)/standard_deviation 

elseif method==5 

[Short,Long]=movavg(data,1,lag,factor) 

if data (end,:)> Long (end,:) 

s=1 % buy 

elseif data (end,:)< Long (end,:) 

s=-1 % sell 

end 

elseif method==6 

[macdvec, nineperma] = macd(data) 

if macdvec (end,:)> nineperma (end,:) 

s=1 % buy 

elseif macdvec (end,:)< nineperma (end,:) 

s=-1 % sell 

end 

elseif method==7 

y=price2ret(data) 

N=length(y) 

% We decompose our data with function db3 

[XX,l] = wavedec(y,decomposition_tree,'db3'); 

% We define GARCH (1,1) process 

[Kappa, Alpha, Beta] = ugarch(XX, 1, 1) 

% We set the random number generator seed for reproducability 

randn('state', 0) 

NumSamples = 20000; 

firstpoint=length_test 

% We simulate the process with Monte Carlo 

[U , H] = ugarchsim(Kappa, Alpha, Beta, NumSamples); 

% Length of vector 

%V=1%length(data); 

% From current day we extract firstpoint data randomly selected 

currentprice = randperm(N-M); 

currentprice= currentprice+N; 

for j=1:firstpoint 

Y1 = currentprice(j); 

Y0 = Y1-N+1; 

p = U(Y0:Y1); 

p = p(:); 

Y1(1,:) = p(1,:); 

prediction = U(Y1+1:Y1+M); 

end 

if prediction>0 

s=1 

elseif prediction<0 

s=-1 % sell 

end 

elseif method==8 

N=length(data) 

% We decompose our data with function db3 

[XX,l] = wavedec(data,decomposition_tree,'db3'); 

[Short,Long]=movavg(XX,1,lag,factor) 

if data(end,:)> Long (end,:) 

s=1 % buy 

elseif data (end,:)< Long (end,:) 

s=-1 % sell 

end 

end 
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